Logic I: Fast Lecture 02

s.butterfill@warwick.ac.uk

Readings refer to sections of the course textbook, *Language, Proof and Logic*.

1. Formal Proof: \land Elim and \land Intro

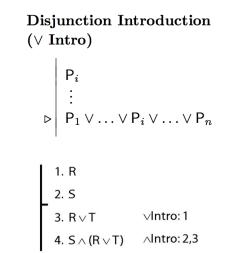
Reading: §5.1, §6.1

Conjunction Introduction $(\land$ Intro)

 $\begin{array}{c|c}
\mathsf{P}_1 \\
\Downarrow \\
\mathsf{P}_n \\
\vdots \\
\mathsf{P}_1 \land \dots \land \mathsf{P}_n
\end{array}$

Conjunction Elimination $(\land Elim)$

$$\begin{vmatrix} \mathsf{P}_1 \land \ldots \land \mathsf{P}_i \land \ldots \land \mathsf{P}_n \\ \vdots \\ \mathsf{P}_i \end{vmatrix}$$

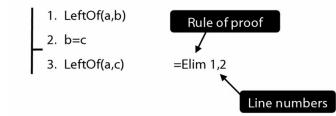

1. P∧Q	
2. Q∧R	
3. P	∧Elim: 1
4. R	∧Elim: 2
5. P∧R	∧Intro: 3,4

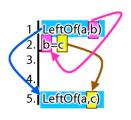
2. awFOL symbol words

symbol	word(s)	
7	not	
→	arrow, ->	
\leftrightarrow	double_arrow, <->	
T	false, contradiction	
٨	and, &	
v	or,	
Ļ	nor	
1	nand	
¥	all, every	
Э	some, exists	

3. ∧Intro and ∨Intro: Compare and Contrast

Reading: §6.1


Let us define a new connective with this truth table:


P1	P2	$\text{P1} \lor \text{P2}$	P1 ↔ P2
Т	Т	Т	F
Т	F	Т	Т
F	Т	Т	Т
F	F	F	F

The following rule is unacceptable. Why?

4. How to Write Proofs

Reading: §3.6

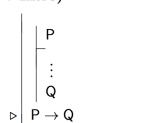
=Elim: 1,2

7. \rightarrow Intro, \rightarrow Elim

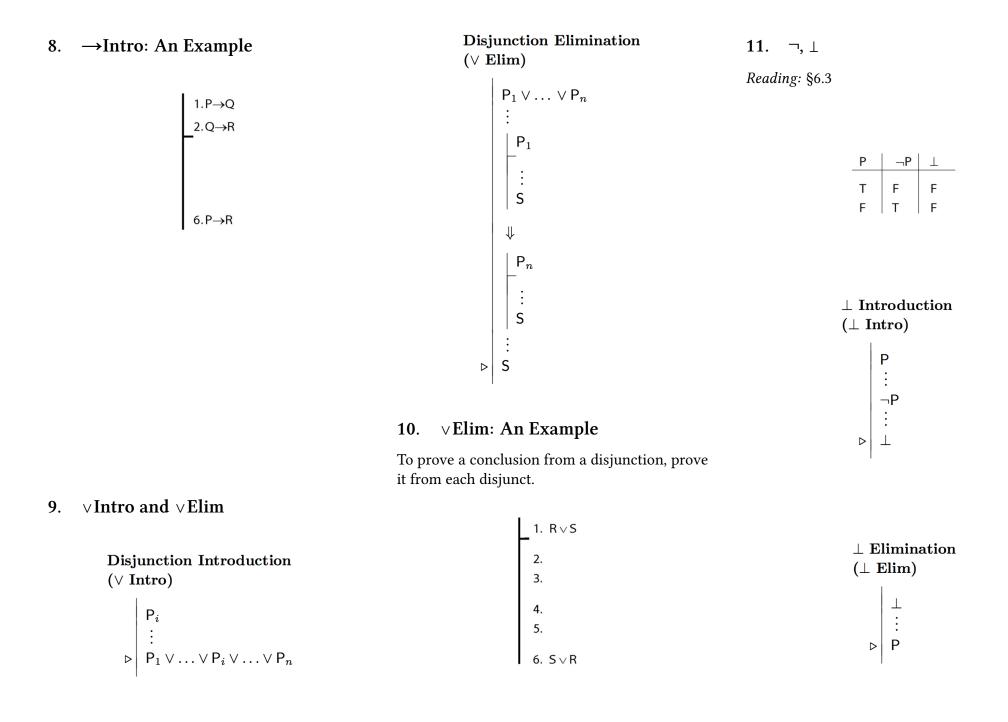
Reading: §8.1, §8.2

 $\begin{array}{l} \textbf{Conditional Introduction} \\ (\rightarrow \textbf{Intro}) \end{array}$

5. Rules of Proof for Identity


Reading: §2.2

Identity Introduction (= Intro) $\triangleright | n = n$ $A \models \neg \neg A$ $\neg (A \land B) \models (\neg A \lor \neg B)$ $\neg (A \lor B) \models (\neg A \land \neg B)$ $A \longrightarrow B \models \neg A \lor B$ $\neg (A \longrightarrow B) \models \neg (\neg A \lor B) \models A \land \neg B$


'has the same truth table as'.

6. DeMorgan: $\neg (A \land B) \rightrightarrows = \neg A \lor \neg B$

'≓⊨' means 'is logically equivalent to', so for now

12. ¬Elim *Reading:* §6.3

13. Scope: A Mistaken Application of ¬Elim

What is wrong with this proof?

14. ¬Intro

Reading: §5.3, §6.3

Negation Introduction (¬ Intro)

P | _ | ⊥ ⊳ ¬P