Logic I: Fast Lecture 04

s.butterfill@warwick.ac.uk

Readings refer to sections of the course textbook, *Language, Proof and Logic*.

1. Everything Is Broken

Reading: §9.1, §9.2 Everything is broken: ∀x Broken(x) Something is broken: ∃x Broken(x)

2. ∃Elim

Reading: §12.2, §13.2

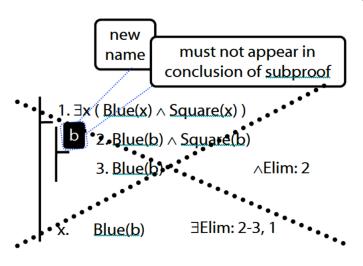
Existential Elimination $(\exists Elim)$

 $\exists x S(x) \\ \vdots \\ \begin{vmatrix} c & S(c) \\ - & \vdots \\ Q \\ \end{vmatrix}$

where c does not occur outside the subproof where it is introduced.



Note this restriction on the use of ∃Elim:



3. All Squares Are Blue (Fast Version)

Reading: §9.2, §9.3, §9.5 \exists and \land work together Some square is blue: $\exists x (Square(x) \land Blue(x))$ Some of my things are broken: $\exists x (Belongs(a,x) \land Broken(x))$ \forall and \rightarrow work together All squares are blue: $\forall x (Square(x) \rightarrow Blue(x))$ All my things are broken: $\forall x (Belongs(a,x) \rightarrow Broken(x))$

4. What does ∀ mean?

Reading: §9.4

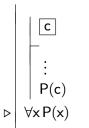
We give the meaning of \forall by specifying what it takes for a sentence containing \forall to be true:

- 1. Give every object a name.
- 2. For each name in turn, create a new sentence like this: delete the quantifier and replace all instances of the variable it binds with that name.
- 3. If ALL of the new sentences are true, so is the original sentence.

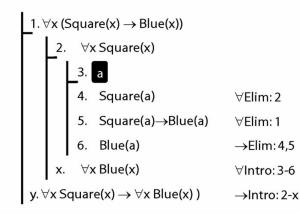
5. ∀Intro

Reading: §12.1, §12.3, §13.1

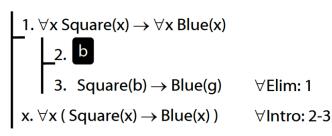
```
Universal Introduction
(∀ Intro)
```



where c does not occur outside the subproof where it is introduced.



Why is this proof incorrect?



6. Summary of Quantifier Rules

Reading: §13.1, §13.2

∀Elim

If it's true of everything it's true of Baudrillard

∃Intro

If it's true of Baudrillard it's true of something

∃Elim

If it's true of something and Q follows no matter which something it is, then Q

∀Intro

If it's true of an arbitrary thing, then it's true of everything.

7. Scope and Quantifiers

Reading: §9.5, §9.6 Underlining shows the scope of the quantifiers:

"All squares are blue" $\forall x (Square(x) \rightarrow Blue(x))$

"If everything is square, everything is blue" $\forall x \text{ Square}(x) \rightarrow \forall x \text{ Blue}(x)$

8. Translation with Quantifiers

Reading: §9.5, §9.6 All discordians weep: $\forall x(Dscrdn(x) \rightarrow Wps(x))$ All French discordians weep: $\forall x((Frnch(x) \land Dscrdn(x)) \rightarrow Wps(x))$ All French discordians weep and wail: $\forall x((Frnch(x) \land Dscrdn(x)) \rightarrow (Wps(x) \land Wls(x)))$ All French discordians weep and wail except Gillian Deleude: $\forall x((Frnch(x) \land Dscrdn(x) \land \neg(x=a)) \rightarrow (Wps(x) \land Wls(x)))$

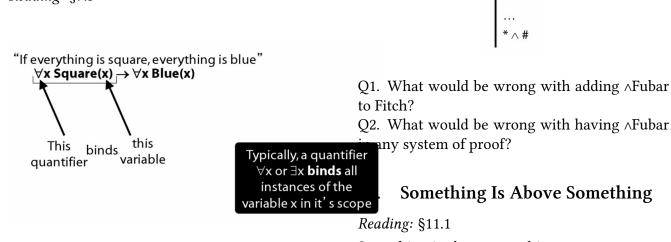
9. What does \exists mean?

We give the meaning of \exists by specifying what it takes for a sentence containing \exists to be true:

- 1. Give every object a name.
- 2. For each name in turn, create a new sentence like this: delete the quantifier and replace all instances of the variable it binds with that name.
- 3. If ANY of the new sentences are true, so is the original sentence.

10. Quantifiers Bind Variables

Reading: §9.3



Something is above something: ∃x ∃y Above(x,y)

11. Substitution of Equivalents

Suppose that φ , ψ and χ are sentences of FOL.

Suppose that φ is logically equivalent to ψ . Let

 $\chi[\phi/\psi]$ be the result of replacing, in χ , zero or

more occurrences of φ with ψ . The *subsitution*

theorem says that $\chi[\phi/\psi]$ is logically equivalent

∧Fubar:

Reading: §4.5, §10.3

12. Fubar Rules

Consider this made-up rule:

Reading: §8.3

to χ.

14. Two Things Are Broken

Reading: §14.1

To translate sentences involving number into FOL, use identity. For example,

'Two things are broken' might be translated as:

 $\exists x \exists y (Broken(x) \land Broken(y) \land \neg(x=y))$

15. Does 'if' mean what ' \rightarrow ' means?

Reading: §7.3

These two arguments are valid: does that mean that 'if' means what ' \rightarrow ' means?

 $\neg A \lor B \qquad \mbox{America does not exist} \lor \mbox{Baudrillard is wrong} \\ If A, B \qquad \mbox{If America exists, Baudrillard is wrong} \\ \label{eq:Baudrillard}$

If A, B If you love logic, things will fall into place $\neg(A \land \neg B)$ Not both: you take logic and things don't fall into

The English argument isn't valid; the FOL argument is valid; therefore 'if' can't mean what ' \rightarrow ' means?

Marnie will not miss her train

If Marnie misses her train, she will arrive on time.