Logic I: Lecture 2

s.butterfill@warwick.ac.uk

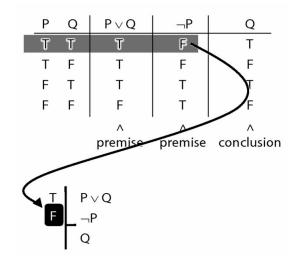
Readings refer to sections of the course textbook, *Language, Proof and Logic*.

1. Why Logic?

'Logic pervades the world: the limits of the world are also its limits.' (Wittgenstein, Tractatus 5.61)

'If a card has a vowel on one side, then it has an even number on the other side.' (Waison & Johnson-Laird 1972)

2. Recap: Validity, Counterexamples

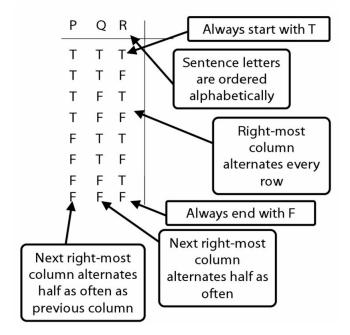

An argument is *logically valid* just if there's no possible situation in which the premises are true and the conclusion false

A *counterexample* to an argument is a possible situation in which its premises are T and its conclusion F.

3. Logical Validity and Truth Tables

Reading: §4.3

Truth tables can be used to show that an argument is valid. To illustrate ...



To establish that an argument is valid:

- 1. Create truth tables for each premise and the conclusion.
- 2. Check whether there is a row of the truth table where all premises are true and the conclusion is false.
- 3. If not, the argument is valid.

4. Complex Truth Tables

Reading: §3.3, §3.5

Complex truth table example:

Ρ	Q	R	(P \land Q) \lor R
т	Т	Т	
Т	Т	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

5. Tautologies and Contradictions

Reading: §4.1, §4.2	(^ Intro)	
Argument 3 1. $(P \land Q) \lor R$ 2. $P \lor \neg P$	$P_1 \\ \downarrow \\ P_n \\ \vdots \\ P_1 \land \ldots \land P_n$	
$\begin{array}{c c} \underline{Argument 3b} \\ \hline 1. & P \lor \neg P \end{array}$	Conjunction Elimination (\land Elim) $ P_1 \land \ldots \land P_i \land \ldots \land P_n$ \vdots $\triangleright P_i$	
P $\lor \neg$ P is a <i>logical truth</i> logical truth defined p. 568 P $\land \neg$ P is a <i>contradiction</i>	1. $P \land Q$ 2. $Q \land R$ 3. P 4. R 5. $P \land R$ \land Intro: 3,4	

6. Formal Proof: A Elim and A Intro

Reading: §5.1, §6.1

contradiction defined p. 564

Conjunction Introduction