Logic (PH133): Lecture 7

s.butterfill@warwick.ac.uk

Readings refer to sections of the course textbook, *Language, Proof and Logic.*

1. Something Is Above Something

Reading: §11.1 Something is above something: ∃x ∃y Above(x,y)

2. There Is Exactly One

There is one creator (at least one, maybe more).

∃x Creator(x)

Ahura Mazda is the one and only creator.

```
Creator(a) \land \forall x (Creator(x) \rightarrow x=a )
```

All squares are broken.

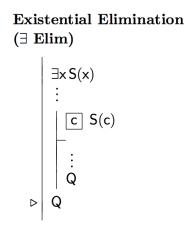
 $\forall x(Sqr(x) \rightarrow Brkn(x))$

There is one and only one creator.

$$\exists y(Creator(y) \land \forall x(Creator(x) \rightarrow x=y))$$

or:

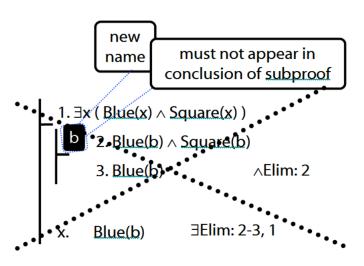
 $\exists y \forall x (Creator(x) \leftrightarrow x=y)$


3. ∃Intro

Reading: §13.2

Disjunction Introduction (\lor Intro) P_i \vdots $P_1 \lor \ldots \lor P_i \lor \ldots \lor P_n$

4. ∃Elim


Reading: §12.2, §13.2

where c does not occur outside the subproof where it is introduced.

1.∃x (Blue(x) \land Square(x))	
b 2.Blue(b) ∧ Square(b)	
3.Blue(b)	∧Elim: 2
4.∃x Blue(x)	∃Intro:3
x.∃x Blue(x)	∃Elim: 2-4, 1

Note this restriction on the use of \exists Elim:

5. Translation with Quantifiers

Reading: §9.5, §9.6 All discordians weep: $\forall x (Dscrdn(x) \rightarrow Wps(x))$ All French discordians weep: $\forall x ((Frnch(x) \land Dscrdn(x)) \rightarrow Wps(x))$ All French discordians weep and wail: $\forall x((Frnch(x) \land Dscrdn(x)) \rightarrow (Wps(x) \land Wls(x)))$

All French discordians weep and wail **except** Gillian Deleude:

 $\forall x((Frnch(x) \land Dscrdn(x) \land \neg(x=a)) \rightarrow (Wps(x) \land Wls(x)))$

6. Scope and Quantifiers

Reading: §9.5, §9.6

Underlining shows the scope of the quantifiers:

"All squares are blue" $\forall x (Square(x) \rightarrow Blue(x))$

"If everything is square, everything is blue" $\forall x \text{ Square}(x) \rightarrow \forall x \text{ Blue}(x)$

7. ∀Intro

Reading: §12.1, §12.3, §13.1

```
Universal Introduction
(∀ Intro)
```

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

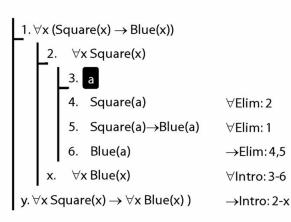
 □
 □

 □
 □

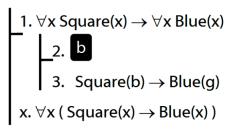
 □
 □

 □
 □

 □
 □


 □
 □

 □
 □


 □
 □

 □
 □

where c does not occur outside the subproof where it is introduced.

Why is this proof incorrect?

8. Summary of Quantifier Rules

Reading: §13.1, §13.2

∀Elim

If it's true of everything it's true of Baudrillard

∃Intro

If it's true of Baudrillard it's true of something

∃Elim

If it's true of something and Q follows no matter which something it is, then Q

∀Intro

If it's true of an arbitrary thing, then it's true of everything.

9. Two Things Are Broken

Reading: §14.1

∀Elim: 1

∀Intro: 2-3

To translate sentences involving number into FOL, use identity. For example,

'Two things are broken' might be translated as:

 $\exists x \exists y (Broken(x) \land Broken(y) \land \neg(x=y))$