\def \ititle {Logic (PH133)}
 
\def \isubtitle {Lecture 8}
 
\begin{center}
 
{\Large
 
\textbf{\ititle}: \isubtitle
 
}
 
 
 
\iemail %
 
\end{center}
 
Readings refer to sections of the course textbook, \emph{Language, Proof and Logic}.
 
 
 
\section{Subproofs Are Tricky: The Answer}
 
\begin{center}
\includegraphics[scale=0.3]{img/unit_227_tricky_answer.png}
\end{center}
 
 
\section{∀Intro}
 
\emph{Reading:} §12.1, §12.3, §13.1
 
\begin{center}
\includegraphics[scale=0.3]{img/rule_universal_intro.png}
\end{center}
\begin{center}
\includegraphics[scale=0.3]{img/proof_universal_intro.png}
\end{center}
\begin{minipage}{\columnwidth}
 
Why is this proof incorrect?
 
\begin{center}
\includegraphics[scale=0.3]{img/proof_universal_intro_incorrect.png}
\end{center}
\end{minipage}
 
 
 
\section{There Is a Store for Everything}
 
\emph{Reading:} §11.2, §11.3
 
There is a store for everything:
 
\hspace{3mm} ∃y∀x StoreFor(y,x)
 
\hspace{3mm} ∀y∃x StoreFor(x,y)
 
Other sentences to translate:
 
\hspace{3mm} Wikipedia has an article about everything
 
\hspace{3mm} Everyone hurts someone they love
 
\hspace{3mm} Someone hurts everyone she loves
 
 
 
\section{Variables}
 
Names : a, b, c, …
 
Variables : x, y, z, w, …
 
Variables are for saying several things about one thing even without specifying which thing it is
 
NB: `Some x is a horse and x is dead' ain't English.
 
 
 
\section{Loving and Being Loved}
 
\emph{Reading:} §11.2, §11.3
 
\begin{center}
\includegraphics[scale=0.3]{img/unit_755_loved.png}
\end{center}
 
 
\section{Somebody Is Not Dead}
 
Some person is dead.
 
\hspace{5mm} ∃x(Person(x) ∧ Dead(x))
 
Some person is not dead.
 
\hspace{5mm} ∃x(Person(x) ∧ ¬Dead(x))
 
No person is dead.
 
\hspace{5mm} ¬∃x(Person(x) ∧ Dead(x))
 
Every person is dead.
 
\hspace{5mm} ∀x(Person(x) → Dead(x))
 
Every person is not dead.
 
\hspace{5mm} ∀x(Person(x) → ¬Dead(x))
 
Not every person is dead.
 
\hspace{5mm} ¬∀x(Person(x) → Dead(x))
 
 
 
\section{Quantifier Equivalences: ¬∀x Created(x) $\leftmodels\models$ ∃x ¬Created(x)}
 
\emph{Reading:} §10.1, §10.3, §10.4
 
 
 
\section{The End Is Near}
 
\emph{Reading:} §14.3
 
‘The’ can be a quantifier, e.g. ‘the square is broken’. How to formalise it?
 
The square is broken \\ $\leftmodels\models$ There is exactly one square and it is broken
 
Recall that we can translate `There is exactly one square' as:
 
\hspace{5mm} ∃x ( Square(x) ∧ ∀y ( Square(y) → x=y ) )
 
So `There is exactly one square and it's broken':
 
\hspace{5mm} ∃x ( Sqr(x) ∧ ∀y ( Sqr(y) → x=y ) ∧ Broken(x) )
 

Press the right key for the next slide (or swipe left)

\title {Logic I \\ Logic (PH133)}
 
\maketitle
 
\section{Subproofs Are Tricky: The Answer}
 
\section{Subproofs Are Tricky: The Answer}
 
\section{∀Intro}
\emph{Reading:} §12.1, §12.3, §13.1
 
\section{∀Intro}
12.4--12.5
*12.6--12.7
12.9--12.10
 
\section{There Is a Store for Everything}
\emph{Reading:} §11.2, §11.3
 
\section{There Is a Store for Everything}
11.3
11.4, 11.8, 11.9
11.11, 11.13, *11.10
11.8, 11.9, *11.11
 
\section{Variables}
 
\section{Variables}
 
\section{Loving and Being Loved}
\emph{Reading:} §11.2, §11.3
 
\section{Loving and Being Loved}
 
\section{Somebody Is Not Dead}
 
\section{Somebody Is Not Dead}
 
\section{Quantifier Equivalences: ¬∀x Created(x) ⫤⊨ ∃x ¬Created(x)}
\emph{Reading:} §10.1, §10.3, §10.4
 
\section{Quantifier Equivalences: ¬∀x Created(x) ⫤⊨ ∃x ¬Created(x)}
 
\section{The End Is Near}
\emph{Reading:} §14.3
 
\section{The End Is Near}
14.26, 14.28
14.2
14.4, 14.5
14.10, 14.11
14.26, 14.28