Logic I: Lecture 03

s.butterfill@warwick.ac.uk

Readings refer to sections of the course textbook, *Language, Proof and Logic*.

1. Logical Validity and Truth Tables

Reading: §4.3

Truth tables can be used to show that an argument is valid. To illustrate ...

To establish that an argument is valid:

- 1. Create truth tables for each premise and the conclusion.
- 2. Check whether there is a row of the truth table where all premises are true and the conclusion is false.
- 3. If not, the argument is valid.

2. Formal Proof: A Elim and A Intro

Reading: §5.1, §6.1

Con (∧ I	junction Introduction ntro)
	$\begin{array}{c} P_1 \\ \Downarrow \\ P_n \\ \vdots \end{array}$
⊳	$P_1 \land \ldots \land P_n$

Conjunction Elimination (\land Elim) $| P_1 \land \ldots \land P_i \land \ldots \land P_n$ \vdots

 $\triangleright | \mathbf{P}_i$

1. P∧Q	
_ 2. Q∧R	
3. P	∧Elim: 1
4. R	∧Elim: 2
5. P ^ R	∧Intro: 3,4
5. P∧R	∧Intro: 3,4

Writing a proof in logic-ex

premises (2)	conclusion
A ^ B	A ^ C
$B\wedgeC$	

Your answer:

	1	A ^ B	
		B ^ C	
•	3		
•	4	A	// and elim 1
•	5	C	// and elim 2
	6	A ^ C	// and intro 4,5

3. Rules of Proof for Identity

Reading: §2.2

Identity Introduction (= Intro)

