
Logic I: Lecture 05 s.butterfill@warwick.ac.uk	$\perp {f Elimination} \ (\perp {f Elim})$	3. \rightarrow Intro: An Example	
Readings refer to sections of the course textbook, Language, Proof and Logic.	⊢ ⊢ P	1.P→Q _2.Q→R	
	2. \rightarrow Intro, \rightarrow Elim	6.P→R	
1. ¬,⊥	Reading: §8.1, §8.2		
Reading: §6.3 $ \begin{array}{c c} P & \neg P & \bot \\ \hline T & F & F \\ F & T & F \end{array} $	Conditional Introduction $(\rightarrow \text{Intro})$ $\downarrow \qquad P \qquad \vdots \qquad Q \qquad P \rightarrow Q$		
	$\triangleright \Big \ P \to Q$		
$egin{array}{c} egin{array}{c} \bot \ {f Introduction} \ (egin{array}{c} \bot \ {f Intro}) \end{array}$	$\begin{array}{l} \textbf{Conditional Elimination} \\ \textbf{(} \rightarrow \textbf{Elim)} \end{array}$	4. VIntro and VElim	
P : ¬P :	$ \begin{array}{c} P \to Q \\ \vdots \\ P \\ \vdots \end{array} $	Disjunction Introduction (V Intro)	
	⊳ Q	$\triangleright \begin{vmatrix} P_i \\ \vdots \\ P_1 \lor \ldots \lor P_i \lor \ldots \lor P_n \end{vmatrix}$	

Disjunction Elimination

7. Not Or

Reading: §3.7

А	В	$A \lor B$	¬(A ∨ B)	¬Α	¬Β	$\neg A \lor \neg B$
Т	Т	Т	F F F T	F	F	F
Т	F	Т	F	F	Т	Т
F	Т	Т	F	Т	F	Т
F	F	F	Т	Т	Т	Т

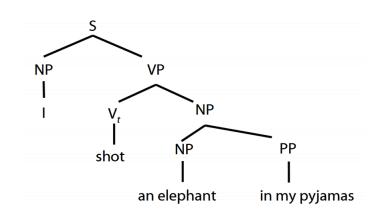
8. DeMorgan: $\neg(A \land B) \rightrightarrows = \neg A \lor \neg B$

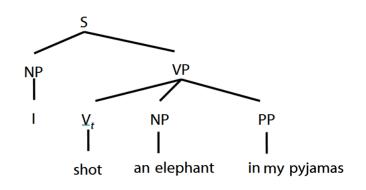
5. VElim and Soundness

Reading: §5.2, §6.2

6. VElim: An Example

To prove a conclusion from a disjunction, prove it from each disjunct.


Reading: §3.6, §4.2


'=⊨' means 'is logically equivalent to', so for now 'has the same truth table as'.

$$A \models \neg \neg A$$
$$\neg (A \land B) \Rightarrow (\neg A \lor \neg B)$$
$$\neg (A \lor B) \Rightarrow (\neg A \land \neg B)$$
$$A \longrightarrow B \Rightarrow \neg A \lor B$$
$$\neg (A \longrightarrow B) \Rightarrow (\neg A \lor B) \Rightarrow A \land \neg B$$

9. Ambiguity

Rule 1: a NP followed by a VP is a S Rule 2: a Vt followed by a NP is a VP Rule 3: a NP followed by a PP is a S Rule 4: A Vt followed by a NP then a PP is a VP Two derivations of Groucho Marx' claim, 'I shot an elephant in my pyjamas':

