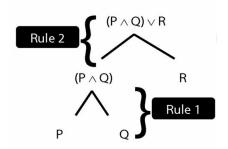
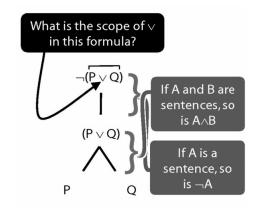
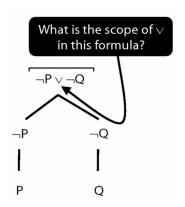

Logic I: Lecture 09


s.butterfill@warwick.ac.uk

Readings refer to sections of the course textbook, *Language, Proof and Logic*.

1. Recap: Scope


Reading: §3.5



2. Scope and Negation

Reading: §3.5, §3.6

3. I Met a Philosopher

Reading: §9.2, §9.3, §9.5

4. Translation with Quantifiers

Reading: §9.5, §9.6

All discordians weep:

 $\forall x (Dscrdn(x) \rightarrow Wps(x))$

All French discordians weep:

 $\forall x ((Frnch(x) \land Dscrdn(x)) \longrightarrow Wps(x))$

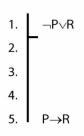
All French discordians weep and wail:

 $\forall x ((Frnch(x) \land Dscrdn(x)) \rightarrow (Wps(x) \land Wls(x))))$

All French discordians weep and wail **except** Gillian Deleude:

 $\forall x ((Frnch(x) \land Dscrdn(x) \land \neg(x=a)) \rightarrow (Wps(x) \land Wls(x)))$

5. Scope and Quantifiers


Reading: §9.5, §9.6

Underlining shows the scope of the quantifiers:

"All squares are blue" $\forall x \ (Square(x) \rightarrow Blue(x))$

"If everything is square, everything is blue" $\forall \mathbf{x} \ \mathsf{Square}(\mathbf{x}) \rightarrow \forall \mathbf{x} \ \mathsf{Blue}(\mathbf{x})$

6. Proof Example: $\neg P \lor R$ therefore $P \longrightarrow R$

7. ∀**Elim**

Reading: §13.1

Universal Elimination

(∀ Elim)