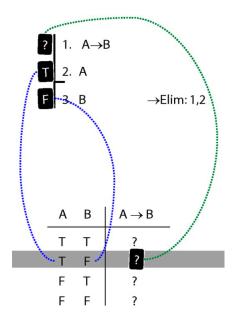
Logic I: Lecture 10

s.butterfill@warwick.ac.uk


Readings refer to sections of the course textbook, *Language, Proof and Logic*.

1. What does ' \rightarrow ' mean?

Reading: §7.1

Assuming that the rules of Fitch are such that it is impossible to prove an argument which is not logically valid, the truth table for \rightarrow is fixed if we accept \rightarrow Elim and \rightarrow Intro.

How do the rules of proof for \rightarrow fix its truth table?

2. Not If

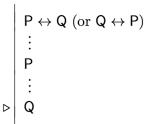
If she has seen it, I am dead. A → B That's not true.

If she has seen it, I am not dead. A → ¬B

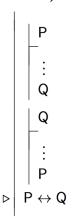
А	В	A → B	$\neg(A \rightarrow B)$	A→¬B
Т	Т	Т	F	F
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	F	Т

3. Fubar Rules

Reading: §8.3 Consider this made-up rule:


Q1. What would be wrong with adding \land Fubar to Fitch?

Q2. What would be wrong with having *A*Fubar in any system of proof?


4. \leftrightarrow : truth tables and rules

А	В	A ↔ B
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Biconditional Elimination $(\leftrightarrow$ Elim)

Biconditional Introduction $(\leftrightarrow \text{ Intro})$

5. Translation with Quantifiers

Reading: §9.5, §9.6 All discordians weep: $\forall x(Dscrdn(x) \rightarrow Wps(x))$ All quadrumanous discordians weep: $\forall x((Quadr(x) \land Dscrdn(x)) \rightarrow Wps(x))$ All quadrumanous discordians weep and wail: $\forall x((Quadr(x) \land Dscrdn(x)) \rightarrow (Wps(x) \land Wls(x)))$

All quadrumanous discordians weep and wail **except Gillian Deleude**:

 $\forall x((Quadr(x) \land Dscrdn(x) \land \neg(x=a)) \rightarrow (Wps(x) \land Wls(x)))$

6. ∃Intro

Reading: §13.2

Disjunction Introduction $(\lor \text{ Intro})$ $| \begin{array}{c} \mathsf{P}_i \\ \vdots \\ \mathsf{P}_1 \lor \dots \lor \mathsf{P}_i \lor \dots \lor \mathsf{P}_n \\ \\ 4. \quad \begin{array}{c} \mathsf{YelBk}(\mathsf{a}) \\ \exists \mathsf{x} \mathsf{YelBk}(\mathsf{x}) \end{array}$

7. What does \exists mean?

Reading: §9.4

We give the meaning of \exists by specifying what it takes for a sentence containing \exists to be true:

- 1. Give every object a name.
- 2. For each name in turn, create a new sentence like this: delete the quantifier and replace all instances of the variable it binds with that name.
- 3. If ANY of the new sentences are true, so is the original sentence.

8. There Does Not Exist

Something is not dead: ∃x ¬Dead(x) Nothing is dead: ¬∃x Dead(x) Everything is not broken: ∀x ¬Broken(x) Not everything is broken: ¬∀x Broken(x)

YelBk(a)1. $\exists x YelBk(x)$ 2. a=a=Intro $\exists x (x=x)$ $\exists Intro: 2$

1. ¬∃x Dead(x)				
2. Dead(a)				
3. ∃x Dead(x)	∃Intro: 2			
4. ⊥	⊥Intro: 1,3			
5. ¬Dead(a)	¬Intro: 2-4			
6. ∃x ¬Dead(x)	∃Intro: 5			

9. Quantifier Equivalences: ¬∀x Created(x) =⊨ ∃x ¬Created(x)

Reading: §10.1, §10.3, §10.4