Logic I: Lecture 16

s.butterfill@warwick.ac.uk

Readings refer to sections of the course textbook, *Language, Proof and Logic*.

1. There Is Exactly One

There is one creator (at least one, maybe more).

 $\exists x \ Creator(x)$

Ahura Mazda is the one and only creator.

Creator(a) $\land \forall x (Creator(x) \rightarrow x=a)$

All squares are broken.

$$\forall x (Sqr(x) \rightarrow Brkn(x))$$

There is one and only one creator.

$$\exists y (Creator(y) \land \forall x (Creator(x) \rightarrow x=y))$$
 or:

 $\exists y \ \forall x (Creator(x) \leftrightarrow x = y)$

2. Every Time I Go to the Dentist Someone Dies

Reading: §11.2 $\forall t$ (

(Time(t) \land ToDentist(a,t)) \rightarrow $\exists x \ (Person(x) \land TimeOfDeath(x,t))$

)

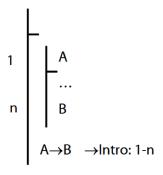
3. Could There Be Nothing?

Reading: §13.2

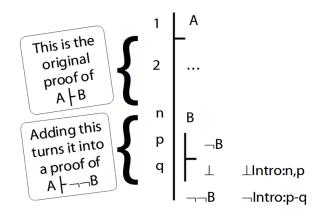
1. ...

m.
$$\forall x (Train(x) \lor \neg Train(x))$$
 ...

n. $Train(a) \lor \neg Train(a)$ $\forall Elim: m$


o. $a=a$ =Intro

p. $\exists x (x=x)$ $\exists Intro: 1$


4. Proofs about Proofs

If $A \vdash B$ then $\vdash A \rightarrow B$ Proof Given a proof for $A \vdash B ...$

... we can turn it into a proof for $\vdash A \rightarrow B$:

If $A \vdash B$ then $A \vdash \neg \neg B$ Proof:

If $A \vdash C$ then $A \vdash B \rightarrow C$

If $A \vdash B$ and $A \vdash \neg C$ then $A \vdash \neg (B \rightarrow C)$

The English argument isn't valid; the awFOL argument is valid; therefore 'if' can't mean what '→' means?

A → B Marnie will not miss her train

A → B If Marnie misses her train, she will arrive on time.

5. Does 'if' mean what ' \rightarrow ' means?

Reading: §7.3

These two arguments are valid: does that mean that 'if' means what ' \rightarrow ' means?

| ¬A∨B America does not exist ∨ Baudrillard is wrong | If A,B | If America exists, Baudrillard is wrong | If A,B | If you love logic, things will fall into place | ¬(A∧¬B) Not both: you take logic and things don't fall into place