Rules of Thumb for Logic 1

s.butterfill@warwick.ac.uk

There are exceptions to these rules of thumb. But they are often useful.

1. Proofs

1.1. Starting

First ask, 'Which *Elim* rule can apply to this premise?' for each premise. Apply any *Elim* rules you can first (except $\forall Elim$ —see below).

Then ask, 'Which *Intro* rule would get me to this conclusion?'

If you still can't get to the conclusion, try using $\neg Intro$. (You can do use $\neg Intro$ even if the conclusion isn't a negated sentence. For example, if the conclusion is $A \lor B$, create a subproof with $\neg(A \lor B)$ as premise, derive a contradiction, use $\neg Intro$ to get $\neg \neg (A \lor B)$ then use $\neg Elim$.)

1.2. ∀*Elim*

Use $\forall Elim$ as late as possible in your proof.

Only apply $\forall Elim$ using names that already occur in your proof.

1.3. ⊥

Don't use $\perp Elim$: you need $\neg Intro$.

When using $\lor Elim$, if you are struggling to get two subproofs with matching conclusions try using $\perp Elim$ or $\lor Intro$.

1.4. What to do with \neg

Having sentences that start with negation (\neg) as premises is awkward. Learning some standard proofs will help you.

If you have
$$\neg(A \rightarrow B)$$
, you can get A like this:

1	$\Box \neg (A \to B)$	
2	$\neg A$	
3		
4		$\perp Intro: 2,3$
5	B	$\perp Elim:$ 4
6	$A \to B$	\rightarrow Intro: 3–5
7		$\perp Intro: 1, 7$
8	$\neg \neg A$	$\neg Intro: 2-7$
9	A	<i>¬Elim</i> : 8

If you have $\neg(A \rightarrow B)$, you can get $\neg B$ like this:

If you have $\neg(A \lor B)$, you can get $\neg A$ like this:

1	$\neg (A \lor B)$	
2		
3	$(A \lor B)$	\lor <i>Intro</i> : 2
4		$\perp Intro: 1, 3$
5	$\neg A$	$\neg Intro: 2-4$

You can use $\neg \exists x Blue(x)$ almost as if it were $\forall x \neg Blue(x)$: you can get $\neg Blue(b)$ like this:

1	$\neg \exists xBlue(x)$	
2	Blue(b)	
3	$\exists x Blue(x)$	$\exists Intro: 2$
4		$\perp Intro: 1, 3$
5	$\neg Blue(b)$	$\neg Intro: 2-4$

2. Translation

Use \forall with \rightarrow , e.g.

$$\forall x(Square(x) \rightarrow Broken(x))$$

means all squares are broken.

Use \exists with \land , e.g.

$$\exists x(Square(x) \land Broken(x))$$

means some square is broken.

English sentences with mixed quantifiers are ambiguous (e.g. 'There is a store for everything.').